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ABSTBACT

This paper is concerned with the effect of nonuniform
❑eshes on the accuracy of finite-difference calculations of
fluid flow. In particular, when a simple shock propagates
through a nonuniform mesh, one may fail to ❑odel the jump con-
ditions across the shock even when the equations are differ-
ence in manifestly conservative fashion. We develop an ap-
proximate dispersion znalysis of the numerical equations and
identify the source of the mesh dependci~cy with the form of the
artificial viscosity. We then derive an algebraic correction
to the numerical equatio:ls-- a scaling factor for the pressure
gradient --to essentially eliminate the mesh dependency. ~~

present sever~~l calculations to illustrate our theGry. We con-
clulle with an alternate inteKpK(?LatlOIl of our results.

1. 1NTROI)UCTION

ln finite differcnc(” mt’Lhods, continuous solutions of sy-
strms of par! i.al differt.ntip.l equations are rcpr:?s, nL~ld by dis-
crcLL’ Values on d mus! Altllou[:ll the solution to thv dlfl”ercn-
L~iil equdLions themselves is clearly indclpt?ndenL of tht! Choic(}
of I.lcsh, th~} dif!’urrnce apl)roxim:lLif)n depends on the del.ails of
[11[’ JiscruLiz:ltion illldS0 varies Wjtll (IIc* ctloicc l)f mrsh.
None’thcless, if the problt”m is well-resolved, the’ numt’ric,]l sf)-
l“tfurl sl)uuld closely approximate tllc’ true solution. As LtIL’

❑ustl is rcflned, onu requirus that t]lt’ Illlmorlcal so~uLl(>ns COII-

vcr~,ft L(I tll(’LrU(~ SUIUL~OIl of tll~m(}r~g~n(ll sy!iLtIm.

{L
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and material velocity behind the #hock are completely deter-
mined by the equation of state and the jump conditions [1],
which express conservation of mass, momentum, and energy.

Kee, Kramer, and Noh [2] showed it is possible in a dif-
ference approximation to calculate the wrong values behind a
shock even if the equations are difference in a completely
conservative fashion. The key feature~ of their demonstration
are the use of an initial mesh that is spatially nonuniform and
an artificial viscosity that depends locally on the mesh scal-
ing. Of even more concern is that the incorrect solution per-
sists even as the mesh is refined, so long as the uesh remains
ncnunlforfn. Similar results have been reported by Lee and
Whalen [3].

Other problems with nonuniform ❑eshes are di~cussed by
Kalnay de Rivas [4], Crowder and Dalton [5], ?lastin [6], and
Chin and Hedstrom [7]. Since it is not always possible to
avoid using ntinuniform meshes, and in fact there are signifi-
cant advantages to variable resolution, it is essential to un-
derstand the source of these zeroth-order errors (errors that
do not vanish as the mesh is refined and hence do not recover
the differential equations) and to ❑itigate them.

In the past, truncation analysis has been the preferred
method of investigating accuracy; hcwever, dispersion analysis
is an important tool in understanding the st.ability of diifer-
enre equations [8]. More recently, Trefetllsen [9] has pointed
out tt,e iaporcance of group velociLy in abtaining accurate
calculations.

Margolin [10] looked at the simulation of stress waves in
a viscoelastic solid. He performed an approximate dispersion
analysis by considering the equivalent continuous equations and
identified a spurious alteration of the sound speed due to co\l-
pling betwec~ artificial viscosity and the stress relaxation
term. He rhen forced the numt!rical dispersion relation to ap-
proximate the physical rl’lation b,y introducing a scaling factur
into the stress gradien, .

This technique, called gradient scoling, differs from
simple subt~action of the truncation errors in at least two es-
sential ways. First, it is not necess~l”y LO calculate any fin-
ite difference approximdtlons to durivativcs; the currcctions
are simply algebraic. Second, subtractin~ thr truncation
errcrs in the example above (of str~’ss w;ivc propagation)
amounLs to climinatin}: tlic artificial viscosiLy. Since this
V~SCOSiL~ lb nt!ces:+ary to daml) numericlll OS(:illilLlollS,” Its
climln~ltion IB noL n viable fiulution L() tit{’ dll fjculLy.



as well as on the wave number. This IS analogous to wave prop-
agation in an Inhomogeneous medium. When the properties of the
mediun vary slowly, one can employ a two scsle analysjs [11].

With this introduction, we can now outline the rest of
this paper. In the next section, we describe a sfmplc problem
of wave propagation on a nonuniform mesh. blculations show a
systematic error (when conpared with analytic results) that
does not decrease with ❑esh refinement. Next , we develop an
approximate dispersion analysis to isolate the problem. The
method of gradient scaling is then applied to the difference
equations, and the r.ew results are compared with both the un-
corrected calculations and the analytic results. Finally, we
discuss why strict conservation is not sufficient to guarantee
the proper state behind a shock.

2. PROBLEM DESCRIPTION

We begin with the linearized equations for one-dimensional
fluid flow, or for stress propagation in an elastic solid:

du -~
‘Z= ax

* au
dt ‘-}’x “

(1)

(2)

Equation (1) expresses the conservation of momentum, where u is
the material velociLy and p is the pressure. Equation (2) is
the constitutivc law for the material. The density P and the
modulus M are considered constant.

We solve a simple piston problem in which the pressure afid
material velocities are initially everywhere zero. In our
model problem. tllc left boundary begins co move Lo the right ~t
time zero, corq)ressing the fluid, wj,tll Mactl numbel of 0.2 ~lnd

(3)



Our difference equations are

n+ 1 n

*&. .Muj+l - ‘;

‘XP+

(4)

(5)

Here the superscript n refers to time level tn = nAt, where At
is the time step. The time step nust be limited by a Courant
condition for stability [8].

We have introduced an artificial viscous pressure into
Eq. (5) to suppress numerical oscillations [12]. The coeffi-
cient A is chosen to have the form

(6)

We have made the length scale equal to the local cell size, so
that the wa.~e front is spread out over a fixed number of cells
rather than a fixed length. In our numerical example we choose
the dimensionless coefficient c = 0.2, whiclt results in the

L
wave being spread over about three cells.

He pick a constant ratio for the mesh spacin~,

(7)

If a equals 1, we have a uniform mestl. If a is greater than 1,
the mesh is expanding; if a is less than 1 the mesh 1s crMl-
tracLing. Thr width of the first cell is

(8)

The results for scwral choirrs of a are shown in FicIIrcs
2, 3, and 4. Thr uniform case (a = 1) yields tlw corrrct solu-
tion. IIowcvcr, whvn a > 1 wc sw th:lt thr prvssure hrhlrrd the
fronL is too hil;h; wll(’n a < 1, tll(’ pressure is to{) low. M[,r(l-

ovcr, the speed 01 thu fro[lt is too slow wIIc1l a > i i-tnd tt,lj
fast when a < 1. W~}noL~* tllot ill vnctl Cil!?(*,ttl[’pr{~ssllrc llr-

hlnd thr fronL dots rt’ach u lPVII1 viIluc. NOLr t.hilt thr amo~lnl

of ovcrsllool or uldc’rshoot IS ;ll~pruximiltcly linritr ill (a - 1).
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Fig. 4. Pressure profiles on a contracting Srid. Note time
scale change compared to Figs. 2 and 3.

To perform the dispersion analysis on a uniform mesh, we
would substitute

‘Y-‘~ exp i(kx - @t) (9)

and so generate the dispersion relation. However, if a # 1,
then in our Eqs. (4) and (5) this substitution results in a
relation between wave number and frequency that Involves Lhc

mesh Eize. This seems to imply that the wave speed has become
dependent on position. However, the numerical simulations in-
dicate t’~dt the wave speed, while ircorrect it a # 1, neverthe-
less is constant for the constall~ ratio meshes, In the next
6ection, wc will describe an approxim:ltc (Dispersion analysis
that iesolve~ this situation.

3. APPROXIMATE DISPERSION ANALYSIS

[lur analysis can he summ:lr[zerl as fo] lows. First, we will
expand the difference equatto~s ~lsln}! Tnylor s(?ri~s to derive n
9et of equivalent continuum equatfons. “rhen WP will find tip-
proximnte snl~ltions in the form of plnnc w.nvus wttll small per-
turbations. Finally, we will r~fnt[)rprr~ th(ls(! l)vrt~lrhntinn~
ns altrrntlon[; of tll~ cfferlfvu w:lvv n~lmb[’r.

Expiin~~n}: tlIe difierellce Eqs. (4) nnd (5), we [irrivv tll(l
equivmltlnt colltfnllurn c,luntioils



and

(We have used

‘~ (-Axl+

2
+A&+(.4x+B)~

ax

●

the relation

a+. ooa j-2
)

(lo)

(11)

(12)

in deriving Eq. (10). )

The constants in Eq. (10) are given by

;l) Ax.E=cL6ii(=-

The expansion has veen truncated by including terms only to
first order in the small quantity (a - 1).

From Eqs. (10) and (11), ve can form the wave equation for
the velocity

&
=ML+A~

#u

+ (m + B) — .
dtz axz axzat

(14)

We seek solutions to this equation as slight perturbations of
plane waves. In particular, we try

u = Uo(l + ax + bxz) exp i(kx - lut) , (15)

which ].t?fids to

k2M = pU2 (16)

for the physical dispersion relation.

Substituting Eq. (15) into the wave pquation Eq. (14), we
find, to first ordtlr in (a - 1) and also in kAx,

(17)

(1 +/l...)- Cxp (ax) . (It+)



u-u ~ w (I(k’x - tot)) , (19)

where k’ 1s an effective wave number. Using Eq. (17), we find
that

CL O-l
an)) ●

k%k(lf~(- (20)

Here the (-) sign refers to waves traveling to the left and the
(+) sign to waves traveling to the right.

In our analysis a is constant over the mesh; there is
nothing special about the origin except that It specifies our
choice of Ax. As long as tix << 1, we could expand about any
point with a similar result. That is, the effective wave
number k’ , and the associated phase and group velocities

(21)

are constant over the ❑esh. (To the order co which we ara in-
terested in this analysis, the phase and group velocities are
equal to each other, as they are in our phybical example.)
This verifies the existence of a flat pressure profile behind
the shack. Note the fundamental asymmetry between left- and
right-going waves because of the asymmetry in zoning. The wave

moves too fast if it moves into a region of expanding zones.

If a varies over the mesh, then the effective wave number
will also vary. However, as long as this variation is slow,
our analysis will hold locally. Of course, if a varies
rapidly, then our derivation of Eq. (l&) is not valid. The
form of the effective phase and group velocities verifies our
numerical experiments in that the error is approximately linear
in (a - 1). It also illustrates that the error, to lowest
ordec, is independent. of Ax, and so will nol vanish as the mesh
is refined.

4. GIUDIENT SCALING

To mitf.gate the effects of fionulliform zoning, we introduce
a scaling factor, B, for the pressure gradient into the
difference Eq. (5). This is, now

t~,+l - Un n+ 1 n+ 1
u

‘J++i
-P,

P Ill
J-i +

At -- Ax
. . .

j

(22!

Expanding our new set of difference equations as before, and
then forming a wave equation for velocity, wc derive

(iZu a2u a2u
3

P —.~)l.— —
+ A 3x3L

+(AX+ B)+.

dt2 ax2 ax at
(23)



Again, we try as a solutiion the form of Eq. (15)

u = Uo(l + ax + bx2) exp (i(kx - wt)) .

Now, however, we ask whether we can choose 8 so that a = O.

In fact, this can be accomplished if we choose

B-ltc (=+ sLa+l
(24)

where the phs sign applies to right-going waves.

When tile gradient scaling term is used in our prototypical
piston problem, the results are clearly improved. For each
choice of a, Table 1 shows that the error is reduced by about
an order of magnitude. This is consistent with our analysis,
which ignored terms of order (a - 1)2.

Pressure
a uncorrected corrected

1.00 .20000 --

1.05 .20103 .20000
1.10 .20201 .20001
1.15 .20302 .20021

1.00 . 2000G --

.96 .19941 .20002
●92 .19883 ●20008

Table I. Coffiparison of the level values of pressure behind the
shock. The last collvnn shows the results of a calcu-
lation with gradient scaling. The results of the ex-
panding ❑esh used a different viscosity than those of
the contracting ❑esh, and so are not directly
comparable.

In our final exauple, w? consider a nonuniform ❑esh with a
variable value of a. The zoning has a sinusoidal variation

Ax = l+.2xsin(—
j

~~ j) (25)

The zoning has a wavelength of ten cells, so a is greater than
1 for 5 cells and is less than 1 for the next 5 cells.

The results of a calculation on this mes~l are shown in
Fig. 5. The pressure amFlitude shows a similar sinusoidal var-
iation, slightly lagging the zonal variation in phase. The un-

corrected c~lculation has a maximum excursion comparable to a

calculation using a constant value of a = 1.07. Lising the
pressure gradient scaling we realize a reduction of error by
about a factor of five. Since a is not a constant in this
example, B must be evalu;~tcd locally. We determined 6 (a)

from Eq. (24) with a /Ax,. j++
j+j m ‘Xj+l
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5. DISCUSS1ON

We conclude by reinterpreting our results in terms of the
jump conditions. In the following paragraphs, we use the term
‘“shock”” to mean the transition between some uniform Irlitial
state and some other uniform final state.

Physically, the thermodynamic Jumps across a shock arid the
shock speed are uniquely determined by the equations of conser-
vation of mass, momentum and energy, pl~Js the equation of
sta~e. (An entropy principle to guarantee a flat profile is
also required.) On a uniform mesh, conservative differencing
will allow one to calculate the precise jumps. As we halve
seen, on a nonuniform mesh, this is no longer true.

The explanation lies in the form of the artificial viscos-
ity, wh{.ch spreads the shock over a fixed number of cells
rather than over a fixed length. As the shock propagates, its
width is steadily changing. Thus, the mass swept up by the
shock is not the mass coming OUL the back end. In essence, the
shock tr~nsiLion is acting as a source or sink of mass, as well

as the associated ❑omentum and energy.

The dispersion of the shock front does noL del)end on wave

number, but ;:ather oI~ the coor(linate, It is iuc to thv LPrm



~ a’u
ax2at

in the wave t uation Eq. (14). Associated with this dispe~
sion, the shouk moves with a slig,. tly incorrect velocity [Eq.
(19);. If we approach this problem with truncation analysis,
we would indentify the terns In the equivalent continuum Eqs.
(10) and (11) that have coefficient A. Our solution would be
to estimate these terms numerically and subtract t>,em out.
This Is equivalent to using only a ‘fixed length- viscosity.

The difficulty with this approach is the technique to
choose this fixed length. The role of the artif?.cial viscosity
is to prevent numerical oscillations behind the shock. To ac-
complish this, the length scale embedded in the VISCOUS coeffi-
cient must be comparable co the size of a cell. (For a more
detailed discussion of artificial viscosity, see Wilkins [14].)
If the fixed length is chosen as large as the biggest cell, we
will have excess smoothing in a region of smaller cells. If
the fixed length is chosen any smaller, than we will develop
oscillations in the region of large cells.

Our solution, based on dispersion analysis, does not
affect the dispersion of the shock front. It does change the
effective wave speed. In terms of the jump conditions, once we
have specified the conservation of ❑ass, ❑omentum and energy,
the only freedom we have remaining is the equation of state.
Indeed, the gradient scaling factor has the effect of altering
the compressibility of the fluid. This new compressibility en-
sures that the amount of mass and mornentun coming out the back
end of the shock is appropriate to yield the proper jumps in

these variables.
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